1,336 research outputs found

    Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis

    Get PDF
    Marine organisms are exposed to increasingly acidic oceans, as a result of equilibration of surface ocean water with rising atmospheric CO2 concentrations. In this study, we examined the physiological response of Mytilus edulis from the Baltic Sea, grown for 2 months at 4 seawater pCO2 levels (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 latm). Shell and somatic growth, calcification, oxygen consumption and NHþ4 excretion rates were measured in order to test the hypothesis whether exposure to elevated seawater pCO2 is causally related to metabolic depression. During the experimental period, mussel shell mass and shell-free dry mass (SFDM) increased at least by a factor of two and three, respectively. However, shell length and shell mass growth decreased linearly with increasing pCO2 by 6–20 and 10–34%, while SFDM growth was not significantly affected by hypercapnia. We observed a parabolic change in routine metabolic rates with increasing pCO2 and the highest rates (?60%) at 243 Pa. NHþ4 excretion rose linearly with increasing pCO2. Decreased O:N ratios at the highest seawater pCO2 indicate enhanced protein metabolism which may contribute to intracellular pH regulation. We suggest that reduced shell growth under severe acidification is not caused by (global) metabolic depression but is potentially due to synergistic effects of increased cellular energy demand and nitrogen loss

    Renormalization of the electron-phonon coupling in the one-band Hubbard model

    Get PDF
    We investigate the effect of electronic correlations on the coupling of electrons to Holstein phonons in the one-band Hubbard model. We calculate the static electron-phonon vertex within linear response of Kotliar-Ruckenstein slave-bosons in the paramagnetic saddle-point approximation. Within this approach the on-site Coulomb interaction U strongly suppresses the coupling to Holstein phonons at low temperatures. Moreover the vertex function does not show particularly strong forward scattering. Going to larger temperatures kT\sim t we find that after an initial decrease with U, the electron-phonon coupling starts to increase with U, confirming a recent result of Cerruti, Cappelluti, and Pietronero. We show that this behavior is related to an unusual reentrant behavior from a phase separated to a paramagnetic state upon decreasing the temperature.Comment: 4 pages, 6 figure

    Collapsing Burrow Causes Death of a Eurasian Beaver, Castor fiber

    Get PDF
    The death of a Eurasian Beaver Castor fiber caused by a collapsing burrow in southeast Norway is reported. Two days of heavy rainfall had presumably caused the burrow to collapse, suffocating the animal

    Seasonal occurrence of Loricate Choanoflagellates in Danish inner waters

    Get PDF
    It is a trend in loricate choanoflagellate research that our knowledge of species diversity is insufficient in terms of understanding annual successional changes at any specific locality, whereas there is a fairly decent coverage worldwide - at least in more coastal realms - in terms of biodiversity within more narrowly defined time windows. To help address this knowledge gap, we have compiled all available loricate choanoflagellate occurrence data from Danish sampling sites covering an overall time span of close to four decades. The close to 100 samples analysed have a good annual coverage and they encompass in total more than 50 species. We demonstrate clear successional trends among well-defined clusters of species. A large contingent of 'non-native' species, which are in a global context largely considered part of the loricate choanoflagellate warm water community, occurred in September 2014 samples from the Baltic Sea entrance, i.e. the Sound between Denmark and Sweden. While the occurrence of these species is likely due to a large inflow of southern Atlantic water, we also discuss whether the findings may instead reflect recent and more permanent climate change-induced alterations to choanoflagellate biodiversity in inner Danish waters. (C) 2016 Elsevier GmbH. All rights reserved

    Use Your Strategic Entrepreneurs to Build Your Strategic Partnerships

    Get PDF
    Internationalisation through strategic partnerships is a goal for many higher education institutions and their upper-level management teams. Yet for institutional objectives to truly flourish, they should get the most out of the various skills that different actors bring to be table. This piece explores the interesting role that can be played by resourceful academic staff in materialising institutional, and individual, aims

    Energy standards in Denmark

    Get PDF

    Impact of seawater carbonate chemistry on the calcification of marine bivalves

    Get PDF
    Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32−] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32−] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32−], indicating that [HCO3-] rather than [CO32−] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32−] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 μmol kg−1 [CO32−] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better understand the physiological processes and their underlying genetics that govern inorganic carbon assimilation for calcification

    Sour times: seawater acidification effects on growth, feeding behaviour and acid–base status of Asterias rubens and Carcinus maenas

    Get PDF
    The impact of seawater acidification on calcifying organisms varies at the species level. If the impact differs between predator and prey in strength and/or sign, trophic interactions may be altered. In the present study, we investigated the impact of 3 different seawater pCO2 levels (650, 1250 and 3500 µatm) on the acid–base status or the growth of 2 predatory species, the common sea star Asterias rubens and the shore crab Carcinus maenas, and tested whether the quantity or size of prey consumed is affected. We exposed both the predators and their prey, the blue mussel Mytilus edulis, over a time span of 10 wk and subsequently performed feeding experiments. Intermediate acidification levels had no significant effect on growth or consumption in either predator species. The highest acidification level reduced feeding and growth rates in sea stars by 56%, while in crabs a 41% decrease in consumption rates of mussels could be demonstrated over the 10 wk experimental period but not in the subsequent shorter feeding assays. Because only a few crabs moulted in the experiment, acidification effects on crab growth could not be investigated. Active extracellular pH compensation by means of bicarbonate accumulation was observed in C. maenas, whereas the coelomic fluid pH in A. rubens remained uncompensated. Acidification did not provoke a measurable shift in prey size preferred by either predator. Mussels exposed to elevated pCO2 were preferred by previously untreated A. rubens but not by C. maenas. The observed effects on species interactions were weak even at the high acidification levels expected in the future in marginal marine habitats such as the Baltic Sea. Our results indicate that when stress effects are similar (and weak) on interacting species, biotic interactions may remain unaffected
    • …
    corecore